Корзина / 0 руб.

0 товаров добавлено

 x 

Корзина пуста

МЕНЮ
01 янв

Обезжелезивание воды. Методы и технологии

Наверное, многим знакомы желтые разводы на сантехнике или бурого цвета вода, льющаяся из крана. Проблема одна — повышенные концентрации железа в воде. Ведь железо — один из самых распространенных природных элементов.

Главными источниками соединений железа в природных водах являются процессы выветривания, эрозии почв и растворения горных пород. Значительные количества железа поступают с подземным стоком и со сточными водами промышленных предприятий. В питьевой воде железо может присутствовать также вследствие использования на муниципальных станциях очистки воды железосодержащих коагулянтов, которые применяют для осветления поступающей воды, либо из-за коррозии водопроводных труб.

Соединения железа могут находиться в природной воде в растворенном, коллоидном и взвешенном состоянии в зависимости от валентности: Fe+2, Fe+3, а также в виде различных химических соединений. Например, двухвалентное железо (Fe+2) почти всегда находится в воде в растворенном состоянии, а трехвалентное железо (Fe+3) — гидрооксид железа Fe(OH)3 нерастворим в воде, кроме случая очень низкого значения рН. Существует еще одна форма присутствия железа в природной воде — это органическое железо. Оно встречается в воде в разных формах и в составе различных комплексов. Органические соединения железа, как правило, растворимы или имеют коллоидную структуру и очень трудно поддаются удалению. Коллоидные частицы из-за своего малого размера и высокого поверхностного заряда, который не позволяет частицам сближаться и препятствует их укрупнению, предотвращая образование конгломератов, создают в воде суспензии и не осаждаются, находясь во взвешенном состоянии и тем самым обуславливают мутность исходной воды.

Все вышеперечисленные формы железа могут по-разному «обнаруживать» себя в воде. Так, если первоначально вода чиста и прозрачна, но через некоторое время в процессе отстаивания образуется красно-бурый осадок, то это признак наличия в воде двухвалентного железа. В случае если вода уже из крана идет желтовато-бурая и образуется осадок при отстаивании — причина — трехвалентное железо. Коллоидным железом окрашена вода изначально, но оно не образует осадка. Бактериальное железо, которое образуется в процессе жизнедеятельности железобактерий, способных использовать энергию преобразования растворенного железа в трехвалентное, проявляет себя радужной опалесцирующей пленкой на поверхности воды и желеобразной массой, накапливаемой внутри труб.

Основной формой железа в поверхностных водах являются его трехвалентные комплексные соединения с растворенными неорганическими и органическими гумусовыми соединениями. Поэтому повышенное содержание железа наблюдается в болотных водах, где концентрация гумусовых веществ достаточно велика. Наибольшие же концентрации железа наблюдаются в подземных водах с низкими значениями рН и с низким содержанием растворенного кислорода. В подземных водах железо присутствует в основном в растворенном двухвалентном виде.

Содержащая железо вода (особенно подземная) изначально прозрачна и чиста на вид. Однако даже при непродолжительном контакте с кислородом воздуха железо окисляется, придавая воде желтовато-бурую окраску. Уже при концентрациях железа выше 0,3 мг/л такая вода способна вызвать появление ржавых потеков на сантехнике и пятен на белье при стирке. При содержании железа выше 1 мг/л вода становится мутной, окрашивается в желто-бурый цвет, у нее ощущается характерный металлический привкус. Все это делает такую воду практически непригодной как для хозяйственно-бытового, так и для питьевого применения.

Согласно принятым санитарным нормам, содержание общего железа в водопроводной воде не должно превышать 0,3 мг/л, ведь это — тяжелый металл, и наряду с марганцем, никелем, хромом, мышьяком, кадмием, свинцом и медью относится к высокотоксичным и долго сохраняющимся в природе веществам. Зачастую содержание железа в водопроводе превышает норму в пять, а то и в десять и более раз, поэтому проблема обезжелезивания воды стоит особенно остро.

В одном литре речной или озерной воды обычно содержится от 0,01 до 1 мг железа, и эта вода прозрачна. В болотной воде железа много, десятки миллиграммов на литр, вот почему она имеет коричневатый «ржавый» оттенок. Но не всякое железо придает воде такой цвет. В подземных водах железо обычно растворено в двухвалентной форме, причем вода при этом бывает совершенно прозрачной. При подъеме на поверхность такая вода приобретает дурной запах и неприятный вкус, а при хранении на воздухе она становится опалово-мутной, и из нее выделятся буроватый осадок.

Так как же можно очистить подземные воды от соединений железа? На первый взгляд, очень просто. Надо перевести железо в нерастворимую трехвалентную форму и как следует отфильтровать. Но это на словах. На деле проблема весьма широка и обусловлена значительным разнообразием природных условий, в том числе разнообразием состава подземных вод, а также форм соединений железа в них. Очистка включает целый ряд физико-химических процессов и сводится прежде всего к переводу соединений железа в нерастворимые и слаборастворимые формы с последующим извлечением их из воды. Практически все способы требуют предварительного аэрирования и фильтрации.

Одним из современных направлений нехимической очистки подземных вод является биологический способ, который основывается на использовании микроорганизмов. Самыми распространенными среди них являются железобактерии. Эти бактерии переводят закисное железо (Fe2+) в окисное (ржавчина Fe3+). Сами по себе эти бактерии не представляют опасности для организма человека, однако продукты их жизнедеятельности токсичны.

Современные биотехнологии основаны на использовании свойств каталитической пленки, образующейся на песчано-гравийной загрузке или на другом подобном мелкопористом материале, например, колонне из активированного кокосового угля, различных синтетических материалов, а также на способности тех самых железобактерий обеспечивать течение сложных химических реакций без каких-либо затрат энергии и использования реагентов. Эти процессы являются естественными и основаны на биологических закономерностях самой природы. Обильное развитие железобактерий отмечается в воде с содержанием железа от 10 до 30 мг/л, однако, как показывает опыт, их развитие возможно даже при концентрации железа в сто раз меньше. Единственное условие — это поддержание кислотности среды на достаточно низком уровне при одновременном доступе кислорода из воздуха, хотя бы в ничтожно малом количестве.

Заключительным этапом биологического обезжелезивания является сорбционная очистка для задержания продуктов жизнедеятельности железобактерий и окончательное обеззараживание воды бактерицидными лучами. При всех своих достоинствах (например, экологичности) и перспективности у биоочистки есть только один недостаток — относительно низкая скорость процесса. Это, в частности, означает, что для обеспечения больших производительностей требуются большие габариты емкостных сооружений. Поэтому широкое распространение находят окислительные и ионообменные методы обезжелезивания.

Окислительные методы обезжелезивания подразумевают использование таких окислителей как воздух, хлор, озон, перманганат калия и др. для ускорения протекания реакции перевода закисной формы железа в окисную с дальнейшим ускоренным осаждением хлопьев железа посредством добавления специальных химических веществ — коагулянтов на осадочных фильтрах. Такая технология в основном применима на крупных муниципальных системах.

Для бытовых и коммерческо-промышленных систем сегодня применяется каталитический метод удаления железа. Реакция окисления происходит на поверхности гранул специальной фильтрующей среды, обладающей свойствами катализатора (ускорителя химической реакции окисления). Наибольшее распространение в современной водоподготовке нашли фильтрующие среды на основе диоксида марганца (MnO2): Birm, Greensand, Filox, Pyrolox и др. Железо (и в меньшей степени марганец) в присутствии диоксида марганца быстро окисляются и оседают на поверхности гранул фильтрующей среды. Впоследствии большая часть окисленного железа вымывается в дренаж при обратной промывке. Таким образом, слой гранулированного катализатора является одновременно и фильтрующей средой. Для улучшения процесса окисления в воду могут добавляться дополнительные химические окислители. Наиболее распространенным является перманганат калия KMnO4 («марганцовка»), так как его применение не только активизирует реакцию окисления, но и компенсирует «вымывание» марганца с поверхности гранул фильтрующей среды, то есть регенерирует ее. Используют как периодическую, так и непрерывную регенерацию.

Все системы на основе каталитического окисления с помощью диоксида марганца кроме специфических (не все из них работают по марганцу, почти все они имеют большой удельный вес и требуют больших расходов воды при обратной промывке) имеют и ряд общих недостатков.

Во-первых, они неэффективны в отношении органического железа. Более того, при наличии в воде любой из форм органического железа, на поверхности гранул фильтрующего материала со временем образуется органическая пленка, изолирующая катализатор — диоксид марганца от воды. Таким образом, вся каталитическая способность фильтрующей засыпки сводится к нулю. Практически «на нет» сводится и способность фильтрующей среды удалять железо, так как в фильтрах этого типа просто не хватает времени для естественного протекания реакции окисления.

Во-вторых, системы этого типа все равно не могут справиться со случаями, когда содержание железа в воде превышает 10–15 мг/л, что совсем не редкость. Присутствие в воде марганца только усугубляет ситуацию.

Ионный обмен как метод обработки воды известен довольно давно и применяется в основном для умягчения воды. Раньше для реализации этого метода использовались природные иониты (сульфоугли, цеолиты). Однако с появлением синтетических ионообменных смол эффективность использования ионного обмена для целей водоочистки резко возросла.

С точки зрения удаления из воды железа важен тот факт, что катиониты способны удалять из воды не только ионы кальция и магния, но и другие двухвалентные металлы, а значит и растворенное двухвалентное железо. Причем теоретически, концентрации железа, с которыми могут справиться ионообменные смолы, очень велики. Достоинством ионного обмена является также и то, что он «не боится» верного спутника железа — марганца, сильно осложняющего работу систем, основанных на использовании методов окисления. Главное же преимущество ионного обмена то, что из воды могут быть удалены железо и марганец, находящиеся в растворенном состоянии. То есть совсем отпадает необходимость в такой капризной и «грязной» (из-за необходимости вымывать ржавчину) стадии, как окисление.

Однако на практике, возможность применения катионообменных смол по железу сильно затруднена. Объясняется это следующими причинами: во-первых, применение катионитов целесообразно там, где существует также и проблема с жесткостью воды, так как железо удаляется из воды вместе с жесткостью. Там, где ситуация с жесткостью достаточно благополучная, применение катионообменных смол нерационально. Во-вторых, ионообменные смолы очень критичны к наличию в воде трехвалентного железа, которое «забивает» смолу и очень плохо из нее вымывается. Именно поэтому нежелательно наличие в воде не только уже окисленного железа, но и растворенного кислорода и других окислителей, наличие которых может привести к его образованию. Этот фактор накладывает также ограничение и на диапазон рН, в котором работа смол эффективна.

В-третьих, при высокой концентрации в воде железа, с одной стороны возрастает вероятность образования нерастворимого трехвалентного железа (со всеми вытекающими отрицательными последствиями — см. выше) и, с другой стороны, гораздо быстрее истощается ионообменная емкость смолы. Оба этих фактора требуют более частой регенерации, что приводит к увеличению расхода соли. В-четвертых, наличие в воде органических веществ (в том числе и органического железа) может привести к быстрому «зарастанию» смолы органической пленкой, которая одновременно служит питательной средой для бактерий.

Тем не менее, именно применение ионообменных смол представляется наиболее перспективным направлением в деле борьбы с железом и марганцем в воде. Задача заключается в том, чтобы подобрать такую комбинацию ионообменных смол (подчас весьма сложную и многокомпонентную), которая была бы эффективна в достаточно широких пределах параметров качества воды.

 

О компании

Добро пожаловать в мир чистой воды! Мы минимизируем издержки, свойственные большим организациям, а значит и радуем наших клиентов отличными скидками. Присоединяйтесь!

Наши контакты

Задать вопрос специалисту:

×

Связаться с нами!

Пожалуйста, напишите ваше имя.

Пожалуйста, напишите ваш телефон.

Invalid Input

Invalid Input